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Abstract
images help filmmakers to outline ideas, key moments,

Storyboards comprising key illustrations and
and story events when filming movies. Inspired by
this, we introduce the first contextual benchmark dataset
Script-to-Storyboard (Sc2St) composed of storyboards to
explicitly express story structures in the movie domain, and
propose the contextual retrieval task to facilitate movie story
understanding. The Sc2St dataset contains fine-grained and
diverse texts, annotated semantic keyframes, and coherent
storylines in storyboards, unlike existing movie datasets. The
contextual retrieval task takes as input a multi-sentence movie
script summary with keyframe history and aims to retrieve
a future keyframe described by a corresponding sentence to
form the storyboard. Compared to classic text-based visual
retrieval tasks, this requires capturing the context from the
description (script) and keyframe history. We benchmark
existing text-based visual retrieval methods on the new dataset
and propose a recurrent-based framework with three variants
for effective context encoding. Comprehensive experiments
demonstrate that our methods compare favourably to existing
methods; ablation studies validate the effectiveness of the
proposed context encoding approaches.

Keywords Dataset, benchmark, text-based-image retrieval,

movie

1 Introduction

Movies, one of the most complex visual art forms, simulate
experiences that communicate ideas, stories, perceptions,
feelings, beauty, or atmosphere through the use of moving
images. In recent years, there has been increasing computing
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research focusing on various aspects of movies, such as
movie shot retrieval [1], action recognition [2], and question
answering [3]. Also, many movie domain datasets [2—8]
have been proposed to facilitate movie understanding.
These datasets are getting larger, and often include various
annotations including subtitles, plots, descriptions, and so on.

Despite the proliferation of movie-related datasets, far too
little attention has been paid to the story structure in movies:
the way they express the stories.

Naturally, videos are the carrier of movie stories. Stories
are, however, implicitly contained in the video consisting of
shots, visual elements, sounds and dialogues, efc. We argue
that video clips, as the final format of film making, usually
mix multiple storylines, making the story structure complex
and unclear. For example, the minimum video clip of many
existing movie datasets [3, 7] is at the minute level. Likewise,
the corresponding text descriptions are highly generalized
(like plots or synopses). Long videos and high-level text make
optimization difficult in certain tasks. Some datasets tend to
], which
favours simple and clear story content, but in this way, they

use cartoons to highlight the story structure [9,

ignore the real-world visual elements. We agree with the
benefits of a clear story structure, and in this way, it would be
more suitable as a testbed for movie story understanding.
Actually, stories in movies can be explicitly expressed using
the storyboard, a graphic layout of sequential illustrations
and images to visually tell a story. Storyboards are useful
in filming movies to express the key moments and outline
the events. The usage of storyboards shows that movie clip
videos can be condensed to keyframes. Inspired by this,
we aim to construct a storyboard-based dataset to clearly
outline story structure to facilitate story understanding. We
name the dataset Script-to-Storyboard (Sc2St), along with
which we introduce a new processing task in the movie
domain: contextual text-based-image retrieval. Fig. 1 shows
a storyboard sample and the retrieval task. A storyboard in
our work is composed of a series of still video frames, with
drawings/pictures of sequential key events and shots in a film.
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1. Before her, a triangle rises from the ground. 2. From a distance, the crystalline pylon almost disappears against the cloudy sky. 3. Holly approaches it, her hand still
on the Tachyon Amplifier. 4. Now, clumps of vines hang from the rough—hewn walls of the cavern. 5. Entering, Holly finds two massive crystals jutting out at opposite
angles, and each emitting a bluish glow. 6. Meanwhile, Marshall, Will, and Chaka lie on their backs on a dune. 7. On the distant horizon, a huge creature crawls toward
them. 8. Marshall, Will, and Chaka all turn their heads in unison. 9. It's a giant crab, snapping two huge claws. 10. The guys lift their heads, fixated on the creature.
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Fig. 1 Contextual retrieval task using the Script-to-Storyboard dataset. A storyboard’s future keyframes are retrieved one by one, given a
movie summary script comprising multiple sentences that depict the whole story, the keyframe history, and the sentences for future frames.

Each round of retrieval selects from a list of frame candidates.

In the Sc2St task, we take a multi-sentence paragraph (or
script, for short) as the story description. Then, for each
movie frame, given its query text, the task asks a model to
retrieve the best match from a prepared list of candidates for
the current frame. These are carefully collected in-movie and
cross-movie frames, serving as a benchmark for evaluation
of the retrieval performance. Section 4.1 defines the task in
detail, and the evaluation setting.

This task differs from conventional text-based retrieval,
such as text-based-image and text-based-video retrieval.
Text-based-image retrieval uses images as visual content, but
it only considers independent text-based-image pairs without
considering the additional context. Text-based-video retrieval
uses video clips as visual content. Although videos contain
frames used as the in-clip context, the dense neighbouring
frames look about the same, resulting in redundant visual
information and unclear contextual structure. Actually, the
text-based-video retrieval task also ignores across-video
context, making it similar to text-based-image retrieval except
for the usage of clips rather than images. There are deeper
challenges in the Sc2St task: in a storyboard, a future keyframe
is not only related to its textual caption, but also the script
telling the story; it should also be visually coherent with
previous keyframes. Existing context-aware image retrieval
methods focus on modelling the context only from the text
[11, 12], e.g., building the textual context from sentence level
to paragraph level. In comparison, the Sc2St task requires a
model to capture contextual information from both visual and
textual streams.

In constructing the Sc2St dataset, we have taken into
account that there are already sufficient datasets in the movie
domain, such as [2—-8]. To avoid repeated annotations, we
have selected the LSMDC [6] movie collection as a basis and
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provide further fine-grained text and keyframe annotations to
it. We processed all available 165 movies in three steps. Firstly,
we produced fine-grained text by systematically parsing the
original video-level text descriptions into sentences. Then,
using rule-based methods to recognize ‘splittable’ sentences,
we further split those into sub-sentences to generate finer and
elementary text instances. Secondly, we identified keyframes
by selecting the most representative images from the video
clips for each text instance using similarity-based and manual
screening, take into account both objective and subjective
factors. Thirdly, we formed stories as storyboards containing
a sequence of text-keyframe pairs using keyframes temporally
close in the original, to ensure semantic storyline coherence.
The storyboard length is by default set to ten items in our
work but is flexible to length. We finally collated the Sc2St
dataset consisting of ~20.4k storyboards with ~61.2k unique
keyframes and ~44k unique text instances (sentences or
sub-sentences describing the keyframe). Statistical analysis
reveals that the newly created Sc2St dataset has several
advantages: (i) finer-grained text than existing movie datasets,
(ii) highly-diverse textual descriptions, and (iii) better
story coherency than in story understanding datasets. To
tackle the contextual retrieval task based on the new
dataset, we propose a recurrent model framework with
three variants targeting dual-way context encoding. We have
conducted extensive experimental comparisons to existing
text-based-image and text-based-video retrieval approaches.
We further evaluate human performance using an online
testing system for comparison. We also provide detailed
analyses and discussions to demonstrate the effectiveness of
our model in capturing the contextual information in the new
task.
Our main contributions are in summary:
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(1) a new benchmark dataset Sc2St in the movie domain
with novel story structures: it comprises storyboards
with coherent story structures, fine-grained texts, and
semantic keyframes,

(2) the contextual retrieval task (script-to-storyboard): given
a script, it aims to retrieve future keyframes by respecting
both the corresponding text and image history coherence,

(3) baseline methods
experimental comparison to existing methods and human

for this task, with extensive

performance, and
(4) discussions of the effectiveness of our methods and of
the potential of our dataset for image generation.

2 Related Work
2.1 Related Datasets

The proposed dataset has two features, where the contents
are in the movie domain and the storyboard form relates to
story understanding. We thus present the related datasets with
analysis from the perspective of movie datasets and datasets
involving sequential story-based tasks.

2.1.1 Movie Datasets

MovieQA [3] was collected from 408 movies and targets story
and video understanding using question-answering. The data
include video clips, plots, subtitles, scripts, etc. However,
there are some concerns about using MovieQA for story
understanding: video clips are not always provided, the text
sources vary largely in detail and are not rich in content, the
video clips are minutes long, lacking fine-grained timestamps,
etc. Going beyond MovieQA, we provide a keyframe-based
story dataset with fine-grained annotation. MovieGraphs [4]
provides graph-based annotations of detailed social situations
from 51 movies. The graph consists of various nodes
capturing the characters’ presence, their emotional and
physical attributes, their relationships and interactions, efc.
MovieGraph focuses mainly on using graphs for movie
situation recognition, while our work targets contextual movie
story understanding using textual and visual data. AVA [2] is
an action recognition dataset sourced from 430 movies with
annotations including 80 atomic visual actions in space and
time on 15-minute video clips. Although the AVA dataset
has densely labelled person-centric actions, the clips used are
only part of the original movies and the action information is
not rich enough for story understanding compared to use of
textual descriptions. MSA [5] contains 327 movies for movie
story understanding in matching between movie segments
and synopsis paragraphs. It gives each movie a synopsis
and provides annotated associations between corresponding

synopsis paragraphs and movie segments. Although MSA
also splits each movie segment into multiple shots (events),
unlike our fine-grained text and keyframe pairs, they MAY
match one paragraph of synopsis to many movie shots due
to the high-level descriptive nature of the movie synopsis.
LSMDC [6] consists of nearly 128k video clips annotated
with detailed descriptive sentences from around 200 movies.
The textual descriptions are collected from the transcribed
audio description (AD), which gives a descriptive narration of
important visual elements of movie clips for visually impaired
people. The usage of AD ensures that the textual description
captures the key story as well as the necessary details, unlike
high-level synopsis/plots or redundant subtitles with less
visual narrative. Our proposed dataset is based on LSMDC,
while the differences are: (i) we use semantic keyframes
rather than videos as visual forms, (ii) we further prepare the
fine-grained text-keyframe pairs by aligning each sub-sentence
with a key image, and (iii) we introduce additional character
and meta-annotations to enrich the existing dataset. Con-
densed Movies [8] targets long-range understanding of the
narrative structures of movies. It consists of around 36k movie
key scenes with high-level descriptions and character face
tracks. The collected movie segments are freely available
from YouTube and the number of movies involved is much
larger than for other movie datasets. However, as each movie
includes roughly ten segments (the key scenes), the clip
duration is long while the description is short. Learning
the relationship between coarse text and complex video is
difficult. The recent MovieNet [ 7] is a holistic dataset for movie
understanding. It was sourced from 1.1k movies, comprising
annotations of movie trailers, photos, plot descriptions,
character information, scene boundaries, descriptions, etc.
Despite the various, large-scale annotations, this dataset
shares a problem with Condensed Movies: the aligned movie
segments and descriptions are at a high level, i.e., the text
source is a synopsis paragraph and the clips are up to a few
minutes.

2.1.2 Story Datasets

PororoQA [9] focuses on video story question-answering
on cartoon videos, with around 16k scene-dialogue pairs.
The dialogues contain fine-grained sentences for scene
descriptions, so the Pororo dataset contains not only rich
descriptive details but also simple and coherent story
structures. Related research also uses Pororo for story-based
image generation [13]. However, the cartoon domain restricts
the diversity of genres, scenes, and characters compared
to the hundreds of movies in our dataset. CoDraw [10] is

a collaborative image-drawing game that contains visual
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and movable clip art objects. The game has two players
communicating together to construct a scene: a teller describes
an abstract scene while the drawer reconstructs the scene
or asks for details. The collected dataset contains ~10K
dialogues with corresponding scenes in multiple rounds.
CoDraw is similar to our dataset since each round’s scene
image is like a movie keyframe and each dialogue tells a
coherent story. However, unlike our movie-based dataset,
CoDraw is based on cartoon art where the visual elements
are simple and the involved actions are predefined. The Vi-
sual Storytelling Dataset [14] was proposed with the aim
of generating image sequences from language. This dataset
has a similar structure to ours: consecutive images, each
provided with a corresponding description. However, the data
are collected from the Internet which constrains the forming
of image sequences, capable of being turned into a story: for
example, some topics like ‘birthday’ or ‘party’ were manually
pre-defined. Also, some images are missing due to deletion
by posters.

2.2 Related Methods

Visual-language retrieval is the most closely related area,
particularly text-based-image and text-based-video retrieval;
we also investigate retrieval tasks involving sequential
encoding. Text-to-image generation tasks are also discussed
since our Sc2St dataset has the potential for sequential image
generation.

2.2.1 Text-based Image Retrieval

Existing works focus on visual-semantic embedding for
learning the similarities between the two modalities. Some
methods have been proposed to improve the ranking losses
used, such as exploiting hardest negative pairs [ | 5] or instance
losses [16] to improve the discriminative representation, and
projection classification loss [17] to categorize one modality
representation vector to another. Other methods further
employ fine-grained image-sentence matching [18, 19],
e.g., matching words with image regions. Recently, the
pre-training-based transformers [20] have become more
popular, achieving significant performance gains in multiple
tasks. Representative visual-language transformers include
Uniter [21], and Oscar [

alignment to learn the image-text representations.

2.2.2 Text-based Video Retrieval

], which leverage word-region

A widely used approach in video-language retrieval is to
learn a joint embedding space from similar texts and videos
] follow the
] by combining

[23]. Recent state-of-the-art methods [23,
mixture-of-experts (MoE) paradigm [
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several different embeddings from pre-trained models for
video representation. Videos are composed of images or
frames and can be taken as single-frame form using the
image features in analysis [26], so the MoE framework can

be adopted in our task.

2.2.3 Contextual Retrieval

In the retrieval tasks, contextual retrieval is a type that
considers either the context in the structure of the text or
the images/videos. The context usually exists in sequential
data forms, e.g., the sequence of sentences in the text
or the continuous frames in the videos. [11] proposes a
hierarchical (from sentence to story) text encoder to encode
each sentence and retrieve the relevant images. [12] aims
to create the storyboard by combining retrieval and style
transfer. Its story-to-image retriever also uses a hierarchical
text encoding method, e.g., from word to sentence to story.
However, these methods capture the context only from the
text part. The most similar to ours is the Contextual Mixture
of Embedding Experts model (CMoEE) [8] which adds
context both from past and future movie clips to learn the
text-based-video similarity. The used experts not only include
the movie scene/objects representations but also the character
embeddings. However, there is no textual context modelling
or global story description constrained here.

2.2.4 Text to Visual Content Generation

Reed et al. [
using conditional generative adversarial networks (GANS).

] first proposed the text-to-image (T2I) model

Afterwards, other research made various improvements,
e.g. to image quality by using coarse-to-fine structure [28,

1, text-based-image consistency based on an attention
mechanism [ ], etc. Recently, large-scale T2I models
have brought remarkable advances in realistic image
synthesis [33-35]. Instead of generating a single image, [13]
can synthesize a series of cartoon images using a
recurrent-based generative model. Similarly, [36] iteratively
generates images from continual linguistic instructions at
multiple steps.

Some applications allow taking intuitive user input, e.g.,
paragraphs or multiple sentences, for content creation [37],
such as text-guided storytelling [14] and video editing [38].
[14] focuses on sequential image retrieval, while [38] can
create video montages made from retrieved video shots based
on user-specified texts. These applications share a similar
sequential retrieval form with Sc2St. However, the aims differ.
The Sc2St dataset naturally contains movie story context and
is built with the objective of contextual retrieval analysis. In
contrast, [ 14, 38] use general topics (tour, party, or animals) to

create the video context with the objective of content creation.
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Table 1 Characteristics of various datasets.

Dataset Domain Textual Annotation Aligned visual unit  Character ~ Coherency types
AVA movie actions - v -
MovieGraphs movie graphs, description long clips v graphs
MovieQA movie subtitles, plots, scripts segments v -

MSA movie plots segments X -
LSMDC movie AD, scripts short clip X -
Condensed Movies  movie high-level description segments v -
MovieNet movie  script, synopsis, subtitles, plots segments v -
PororoQA cartoon description short clips v video
CoDraw cartoon dialogues keyframes v sequential images
Visual Storytelling open description keyframes X sequential images
Sc2St movie (sub-)sentences, meta, actions keyframes v sequential images

Table 2  Statistical analysis of various datasets. N/A: information not available. *: data computed from derived video clips.

Dataset #videos  #visual units  avg. unit dur.(s) #sents/unit #words/sent dur.(s) / sent
AVA 430 - - - - -
MovieGraphs 51 7.6k 44.28 2.73 12.9 16.2
MovieQA 140 6.8k 202 N/A N/A N/A
MSA 327 4.5k 413.3 5.9 21.8 70.0
LSMDC 204 128k 4.1 1.0 9.0 4.1
Condensed Movies 3605 334k 134 - - -
MovieNet 1100 4.2k 428 5.9 - 72.5
PororoQA 171 16k 4.6 2.7 - 1.7
CoDraw - 70k - 1.97 16 -
Visual Storytelling - 81.7k - 1.07 114 -
Sc2St 165 61.2k 4.25% 1.08* 10.9 3.94*

3 The Sc2St Dataset
3.1 Dataset Construction

The successful usage of storyboards in film making reveals
their power to illustrate the condensed story. The sequential
structure explicitly delivers a more concise but coherent visual
story structure, and we thus aim to use a storyboard as the data

|

] uses synthetic

form. Similar image-based story datasets include CoDraw [
and Visual Storytelling [14]. However, [
cartoon data that is limited in scene and character variety and
lacks the generality of the real world. [14] collects image-text
pairs independently from the Internet and constructs stories
manually; as a result, the story cohesion may not be strong
and neighbouring image styles are usually different. Thus, we
choose the movie domain because movies not only naturally
contain underlying storylines, but also comprise fruitful
visual content in the real world accompanied by rich textual

descriptions, subtitles or plots, efc.
3.1.1 Data Source Selection

To construct the Sc2St dataset, we started by exploiting several
existing movie datasets [2—8], which cover a wide range of
movies with various annotations. Using existing datasets
brings two advantages. First, it provides alignment with the

existing dataset format. It is convenient to use a familiar
dataset for research: for example, MS-COCO [
great attention, with following work providing additional

] has drawn

annotations [ ] based on the original dataset. The second

advantage is the saving of significant time and labor. Some
annotations, e.g., subtitles and descriptions, do not change,
once collected for a movie.

We carefully explored existing movie understanding
datasets, such as MovieQA [3], LSMDC [6], MovieNet [7],
and Condensed Movies [8]. After investigating their
availability, accessibility, and richness , we eventually selected
LSMDC as the data source upon which to build our dataset.
LSMDC stems from an active movie understanding challenge;
it has well-maintained movie videos and textural annotations.
The entire LSMDC has 204 movies with various genres
including action, science-fiction, family, documentary, efc. In
particular, LSMDC provides short clips (of several seconds)
with corresponding detailed descriptions. In contrast, other
datasets such as [8] only contain brief descriptions for lengthy
movie segments (of several minutes). Tab. 2 quantitatively
compares the average clip duration, showing LSMDC has
shorter clips (4.1 s). In addition, the text annotations of
LSMDC were collected from two main sources, movie scripts
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Script:
(1) In an office, the girl on the phone lays down the receiver (2) then crosses to the window. (3) A limb pokes through the wall. (4) Three of the limbs doing
the work, the fourth holding AUNT MAY. (5) OCTAVIUS is hammering up the outside of the office building. (6) Spider man appears above him. (7) High up
the building, OCTAVIUS drops AUNT MAY. (8) A web come from Spider man catches her, and AUNT MAY springs back up. (9) Below her, OCTAVIUS
crashes SPIDER-MAN against the building. (10) Amazingly, SPIDER-MAN still has a battle on his hand.

Fig.2 A storyboard example from the Spiderman movie. This example is composed of 10 keyframe-description pairs, but it can be used to
construct storyboards of flexible length. The characters’ names are shown in uppercase for clarity. Note that each description can be part of
its original LSMDC clip-level description, such as descriptions (1) and (2). This enables pairing with fine-grained keyframes in our dataset.

and audio descriptions (AD). The latter are usually used to
help people with visual impairments understand movies, so
are more accurate and descriptive. They are well (manually)
aligned with corresponding movie clips to form the video-text
pairs. Unlike other annotation formats (e.g., movie synopsis,
subtitles, and plots), the annotated text here can provide
a narrative description of the storyline as well as the key
visual elements in movie clips. Finally, after excluding the
movies without accessible annotations, e.g. blind test sets,
we obtained 165 movies in total, each with hundreds of video
clips and textual annotations.

Although each movie in LSMDC is split into hundreds of
clips of varying duration (typically a few seconds), the video
clips cannot be directly used for our task since they contain
consecutive frames. Also, the corresponding text description
for one clip generally contains multiple sentences and needs
further splitting. We then perform several processing steps to
build a keyframe-based story dataset with fine-grained textual
description: (i) text processing which parses sub-text from the
original description, (ii) keyframe selection that extracts the
most representative keyframe image representing the given
text description, and (iii) story formation to build stories of a
specific length for the retrieval task. We next describe these
three processing steps in detail.

3.1.2 Text Processing

The descriptions of the original text-based-video pairs
in LSMDC usually comprise multiple sentences or
sub-sentences. Directly using them would require selecting
multiple keyframes covering different scenes, while we believe
that using elementary sentence and image pairs is likely to
be more helpful to finer text-based-image understanding.
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In order to construct fine-grained matching, we designed
an automatic two-step text processing procedure. First, we
perform language analysis using the spaCy tool to parse and
split the text into sentences. Second, we further split the
sentences into sub-sentences using a rule-based method. We
collect a list of conjunctions (e.g. then), delimiters (e.g.,
semicolon), and other particular symbols (e.g., consecutive
dashes) based on analysis of the text. An example is shown
in Fig. 2, where scripts (1) and (2) originate from the same
sentence, and the corresponding frames are well-matched to
each sub-sentence. It clearly demonstrates that fine-grained
extraction of sub-sentences assists selection of more specific
keyframes. We next describe how the keyframes are selected
and aligned with the given text.

3.1.3 Keyframe Selection and Alignment

Videos are composed of successive frames. We first sample
raw frames at a sampling rate of 5 frames per second from the
original LSMDC video clips. The sampled frames are usually
redundant, and often contain similar or even duplicated visual
information. To select keyframes with high expressiveness and
well-matched to the text, an intuitive idea is to use rule-based
methods, such as selecting a frame with a fixed position (e.g.
the middle), or randomly selecting a frame. However, a raw
clip in LSMDC may contain unrelated frames at its start or
end, due to errors in labeling. For example, Fig. 3 shows that
two frames of Dobby are wrongly included in the gateau scene
(Harry Potter and the Chamber of Secrets). Therefore, we use
a two-step process: semantic alignment based on scoring the
frame-text match, and human screening to avoid errors.

We compute the text-image similarity using a universal
pre-trained model [42], which has also been used for
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Text: The gateau floats out of the kitchen.

Fig. 3 In the LSMDC dataset, frames at the edge of a shot can be unrelated to the scene described by the text due to manual clip
segmentation errors. Red boxes show such frames belonging to the previous shot.

constructing multi-modal datasets [43, 44] by aligning images
and text. Then the frames are sorted based on their cosine
similarity to the query text. By default, the top-ranked frame is
taken as the keyframe, as it shares the most semantic features
with the text instance.

We then perform a manual screening process to check
whether the selected keyframes are reasonable from a human
point of view. Specifically, we show the selected keyframes
based on image-text similarity to three experienced annotators
and ask them to check if the keyframes (i) match the text,
and (ii) are more representative than other similar frames.
If all annotators agree with the initial selection, it is kept. If
not, voting is used to determine the final keyframe selection.
For even votes, further discussion is conducted, followed by
further voting.

3.1.4 Story Formation

After obtaining fine-grained text descriptions and aligned
keyframes, the final step is to construct the Sc2St data samples
in story form. Specifically, a storyboard is composed of
sequences of consecutive keyframes, with each keyframe
paired with a sentence or sub-sentence, so that all the sentences
form the script that tells the whole story. The clips from
which the keyframes are derived should be temporally close
(< 10 seconds) to ensure semantic storyline coherence. In our
implementation, we set a fixed image sequence length (10 in
our experiment) for each storyboard to balance the feasibility
and difficulty of the task. In detail, story formation has two
main steps, clip grouping and within group story formation.

The video clips in the original LSMDC are cut from movies,
and neighbouring clips may have a gap between them. Its
length may be found by examining the current clip’s starting
timecode and the previous clip’s ending timecode. A small
interval indicates that these neighbouring clips very likely
belong to the same scene. After experimentation, we chose
10 seconds as the threshold for grouping clips.

For each group, starting from the first clip, we add each
successive clip’s associated keyframes with paired sentences
to form a storyboard until its length is at least the required
story length. If the storyboard has a greater length, we remove
the extra keyframe-text pairs at the end to provide the required
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(a) Sc2St word distribution (b) Diversity Comparison

Fig. 4 (a) Distribution of unique verbs and nouns within the
storyboard scripts in the Sc2St dataset. (b) Percentage coverage
of unique words (y-axis) by dataset coverage (z-axis), compared
to other image-sequence-based story datasets. VST is the Visual
Storytelling [14] dataset. Curves with higher slopes mean more
unique words are used up as dataset coverage grow. The Sc2St
dataset has a more gentle curve and thus has more diverse words in
the text.

storyboard length. After a storyboard is generated, we move
to the next clip and restart grouping.

Here, we specify that a story has a fixed length, following
[13, 14] for easier evaluation and benchmarking. Note that
we could easily generate storyboards with flexible lengths for
different experiments and scenarios using the above methods.
Fig. 2 presents an example of a storyboard with its script
consisting of sentences or sub-sentences. More storyboard

samples can be found in the appendix.

3.2 Dataset Analysis
3.2.1 Overview

The final Sc2St dataset consists of ~20.4k storyboards
covering ~61.2k distinct keyframe images, ~204k sentences
(~244k distinct sentences), ~21k unique words, and ~2.9k
characters. Taking the 10-image storyboard as an example,
most scripts in Sc2St dataset contain 80 to 127 words (at the
20 and 80 percentile, respectively), with the average words
around 108. Using parts-of-speech analysis, Fig. 4(a) shows
the distribution of unique nouns and verbs for each script
and Fig. 5 illustrates the word cloud of the most frequently
used verbs, nouns, attributes, and characters. The following
analyzes the dataset characteristics from various perspectives.
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3.2.2 Descriptive and Fine-Grained Text

Compared to existing movie or story understanding datasets,
the text annotations in our Sc2St dataset have two
differentiating features: they aredescriptive and fine-grained.
Tab. 1 shows the text’s characteristics. Most existing datasets
use high-level (e.g. plot or synopsis) or raw (e.g. subtitles)
textual annotations. The Sc2St dataset relies on descriptive
sources (audio description and movie scripts) for descriptive
and visual-content aware purposes. Although other datasets
such as MovieGraphs and Condensed Movies also contain
descriptions, the corresponding video lengths are much longer.
We categorize the visual units into short clips, long clips, and
segments based on increasing video duration; movie clips
have detailed text annotation while segments have coarse
annotation. Tabs. 1 and 2 summarize information of visual
units. Only LSMDC and PororoQA contain short clips. Our
Sc2St dataset has finer text than the original LSMDC, e.g.,
there are 1.08 sentences per clip (#sents/unit), compared
to 1.0 in LSMDC: on average a video clip is described by
more (sub-)sentences. The duration per sentence (dur./sent)
values also verify this. Considering image-based datasets, we
have similar statistics of words and sentences to the Visual
Storytelling dataset.

3.2.3 Text Diversity

In terms of text diversity, we compare our Sc2St dataset
to other similar story datasets which contain sequential
] and
]. Fig. 4(b) shows the cumulative

text-image pairs, including Pororo [9], CoDraw [
Visual Storytelling (VST) [
coverage of unique words (y-axis) by coverage of dataset
(z-axis) on shuffled text annotations for each dataset. A steep
curve at the start (left-hand z-axis) reflects lower diversity.
The result shows that word distribution in our dataset is more
even: at 25% coverage of dataset samples, our dataset covers
only 52% words compared to Pororo (62%), CoDraw (57%),
and VST (56%). Thus, the Sc2St dataset has more diverse
descriptions than the others.

3.2.4 Story Coherency

In terms of story understanding, datasets in the movie domain
unusually use videos as visual content while facing several
challenges to reflect a clear story structure. First, minutes-long
videos always contain many shots, resulting in complex
and distant story structures with various backgrounds and
characters [3, 7, 8]. Second, the discrepancy between dense
video format and simple textual description leads to poor
cross-modality alignment [7, 8]. Third, shorter video clip-text
pairs often ignore the larger context [6]. These problems
were noted in [9] and a cartoon-video-based dataset Pororo
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Fig. 5 Word clouds of the most frequent verbs, nouns, attributes,
and characters in our Sc2St dataset.

was proposed to leverage the simple storyline in cartoon
arts to maintain story coherency. Instead of using videos, a
derived image-version Pororo-SV adopts the images extracted
from videos to build the stories for Story Visualization [13].
Similarly, others such as CoDraw and Visual Storytelling
use image sequences as a way to reflect the context. Our
proposed Sc2St dataset also uses a sequential approach to
tell stories, while the visual movie content is richer than in
cartoon datasets and more coherent than in an open domain.
Statistics are shown in Tab. 1(last column).

4 Benchmark Evaluation

In this section, we first elaborate on the task definition with a
specifically designed evaluation protocol, and then evaluate
both baselines and the state-of-the-art in text-based-image
and video retrieval on the proposed Sc2St dataset. We further
propose our own approaches with three variants targeting the
contextual retrieval task. Finally, we show how we adapt the
evaluation protocol to human participants.

4.1 The Contextual Retrieval Task
4.1.1 Task Definition

Given a paragraph of movie script with s sentences S =

(S1,...,S55), the storyboard history with a series of images
Z = (Ii,...,I;—1), and a list of 100 candidate images
C = (Ct(l) ,C’t(wo)), the output should rank C; for the

most suitable I;. Here ¢ denotes time steps or rounds in the
storyboard. In our setting, 2 < ¢ < 10. The reason we start
from ¢ = 2 is twofold. First, there is no previous frame at
t = 1, which impedes models from retrieving a reasonable
keyframe. Second, a frame at ¢ = 1 is necessary for human
evaluation at 2 < t < 10, and thus for learned models to

make comparisons. The maximum time step is 10 because
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each storyboard contains 10 keyframes, meaning there are 9
rounds of retrieval for every storyboard.

4.1.2 Dataset Splits

The Sc2St dataset contains 20413 storyboards, each of which
has 10 images and needs 9 rounds of experiments. The dataset
is split into 16330 for training (80%), 1022 for validation
(5%), and 3061 for testing (15%). Thus, there are 183717
training, 9198 validation, and 27549 testing rounds in total.

4.1.3 Candidate Keyframes

We prepare the candidates as follows. For each ground truth
image in a storyboard sample, the candidate set includes 1
correct image and 99 incorrect images of two kinds: Similar
images are about ~70% of the total. We first extract the
1024-dimensional features for all keyframe images using the
121-layer DenseNet [
matrix over all keyframes. Then, each keyframe is assigned

], then compute the cosine similarity

a set of most similar candidates, which are chosen from the
same movie and other movies, with about 30% from the same
movie to ensure a certain level of difficulty. Random images
make up the remaining ~30%, and are randomly selected
from the other keyframes from the current movie (series) and
other movies, again in the same ratio.

Note that there are no overlapping candidates across the
different data splits to avoid data leakage. The candidates
can include those that do not belong to any storyboard, i.e.
isolated ones not qualified to form a story.

4.1.4 Evaluation Metrics

Each round of retrieval is prepared with a list of 100 keyframe
candidates. The tasks are automatically evaluated using
retrieval ranking scores on the candidate lists, which include
(i) recall@Fk, the recall (percentage) of the top k ranked
(higher is better), (ii) mean rank (lower is better), and (iii)
mean reciprocal rank (MRR) (higher is better).

4.2 Baselines

We consider two baselines to evaluate whether methods are
better than chance. The prior baseline is given by random
results over the candidates without using any inputs, and the
similarity baseline comes from results obtained by descending
cosine similarity scores between candidate images and the
image in the last round.

4.3 State-of-the-Art

No methods directly target our task, and the most closely
related research targets text-based-image and video retrieval.
Considering the types of methods and involvement of context
encoding, we classify existing methods into four groups:

text-based-image retrieval , video retrieval, pre-training-based
visual transformers, and contextual retrieval, respectively.
4.3.1 Text-based-image Retrieval (1-)

We compare to two recent text-based-image retrieval methods:
SCO [

CAMP [
For fairness of comparison, we use Faster R-CNN [47] to

], that learns sentence-image similarity, and
], for word and region-level similarity learning.

extract region-level visual features and [48] for encoding word

embeddings.
4.3.2 text-based-video Retrieval (V-)

Mixture of embedding experts (MoEE) models are widely
]. A standard
procedure is to use a weighted combination of multiple expert

used in text-based-video retrieval [23,

embeddings for video representations to learn text-video
similarity. Although our data modality is images, we treat it
as a single-frame video following [26]. We use the following
experts for keyframe representation: scene features using the
DenseNet161 model [45] pre-trained on the Places365 dataset,
object features using the SENet154 [

on ImageNet, and a character embedding that encodes the

] model pre-trained

top-100 characters mentioned in the text.
4.3.3 Pre-training-based ViT (P-)

Recently, vision-language transformers have been widely used
in multi-modal alignment based on pre-training. We choose
] and OSCAR
[22] models. Both adopt object tags and regions detected

to compare to the representative UNITER [

in images to better learn the text-image alignment. We first
extract the detected objects with region features from the
keyframes using Faster R-CNN [47]. Then, we fine-tune the
pre-trained models by feeding them with the text-keyframe
pairs and object features. The [CLS] token is used as input

for the following retrieval task.
4.3.4 Contextual Retrieval (C-)

We further compare to methods involving contextual retrieval,
which exist for text-based-image or text-based-video retrieval.
For the former, we compare to a neural story illustration
method [
to learn a representation for the input story while keeping

], StoryShow. It uses a hierarchical GRU network

coherence between sentences to retrieve a sequence of ordered
images, which is similar to the setting for the Sc2St task. For
the text-based-video domain, we compare to the Contextual
MoEE (CMoEE) [8], which learns the similarity score
between text and video using weighed expert features from
the current and past video clips. We replace the original video
clips with keyframes and use the same experts explained in
the MoEE model. As our contextual retrieval task involves
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Fig. 6 Proposed recurrent model architecture using three contextual fusion encoders. After encoding the text query and keyframe separately,
a context encoder G is used to capture the context gist g from the recurrent outputs (rs or r;) at each time step ¢. The two recurrent modules
are implemented using LSTM cells to encode both streams. Then a fusion encoder (LF, GF, or SA) takes the two recurrent outputs and fuses
them in different ways, as follows: LF performs late fusion using concatenation, GF uses two gates for cross-gating the information from the
two modalities, and SA uses self-attention on the concatenated recurrent outputs. At each time step, there is a prepared keyframe candidate
list C'¢ used for optimizing the model using the cross-entropy (CE) loss.

text and frame context, these two methods have a better fit to
our task than other methods.

4.4 Proposed Methods
4.4.1 Approach

The storyboards contain rich visual and textual context,
namely the keyframes and text descriptions. To better capture
the contextual information from both sequences, we base
our model on a recurrent architecture. Fig. 6 illustrates the
framework. Specifically, at each time step ¢, the text query
S; and last-round image I; i (the keyframe history) are
separately encoded using a text encoder E's and image encoder
E;. Then, a context encoder G is utilized to capture the
contextual gist g; by tracking the hidden states from both
image and text streams. In the first round, a script encoder
EY encodes the entire movie script to form the initial hidden
state H;. The following decoder takes the gist as input and
finally computes the dot product similarity with the given
candidates.

In the implementation, the image encoder is derived from
a pre-trained Inception-v3 [51] model. It serves as a general
feature extractor that converts images in the storyboard history
7= (L,..
feature map F = (f1, ...

., I;_1) into two types of features: a last-layer
, ft—1), and its global feature vector

TSINGHUA @ Springer

UNIVERSITY PRESS

F = (f1,..., ft_1) by applying global pooling to F. The
global image features F are exploited as initial keyframe
features. Note that we append additional layers to the image
encoders to fine-tune them. The text encoder is a pre-trained
uncased BERT model [

for text representation. G is the core part of our method, and

], and we use the pooled features

has two parts: recurrent modules and fusion modules. The
recurrent modules use LSTMs to encode sequential text and
keyframe features separately, while the fusion modules aim to
fuse the recurrent outputs to generate the context gist. We use
three mechanisms to fuse the recurrent outputs, as follows.

4.4.2 Late Fusion (LF)

In the late fusion encoder, the text and image features are
directly concatenated and then processed by a multilayer
perceptron (MLP). This simple approach fuses the two
modality features into a joint semantic space (g).

4.4.3 Gated Fusion (GF)

The gated fusion encoder has a gating mechanism that controls
what information is passed on or forgotten, as in a gated linear
layer (GLU) [
using two gated layers for filtering image history information

]. Here we propose a cross-gating mechanism:

by text information and filtering text information by image
history information. The two outputs are then concatenated
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as the context gist, as formulated by:

9t =Gs (rg) vt + Gy (ri ) 1 (1)
where G is the gated module including linear transformation
and a sigmoid layer, 7% and 7'3—1 are recurrent outputs for text
at current time step ¢ and keyframe history at the previous
time step ¢t — 1.

4.4.4 Self-Attention Fusion (SA)

We leverage an attention mechanism [20] to connect the
visual and textual information. Specifically, self-attention
(SA) is used to bridge the two recurrent outputs where we
adapt the non-local concept from [53] to implement the SA
module for our data inputs. Firstly, image and text contexts are
concatenated and fed into an MLP to get the [NV-channel unified
representations u € RUV*N where U is the unified feature
dimension. Then, attention is realized by introducing three
linear transformations: W,, Wy, and W,,. The self-attention

computation on each channel of u is formulated as:

N

u; =W, Z w; ;U;, 2
i—1

wy = =) 3)

= —— 22—,
Zkzl exp (ai,k)

where «; ; = (uni)T (Wxu;). Based on the obtained
context gist g;, the decoder first computes the dot product
similarity to the 100 keyframe candidates’ features and uses
a softmax layer to get the classification score (posterior
probabilities) over all candidates. Cross-entropy loss is then
adopted for optimization.

4.5 Human Evaluation

To evaluate human performance on the contextual retrieval
task, we built an online user study system (Online Human
Evaluation: https://sc2st.com) using the same testing set. As
the testing set includes ~3k storyboard samples covering
~27k rounds of experiments, we randomly chose 30 samples
from it to reduce the testing size, resulting in a total of
270 rounds of retrieval. To align the human evaluation with
the ranking-based evaluation protocol as well as to make
it practical to conduct, for each retrieval round, we allow
participants to choose at least 1 but up to 10 images instead
of exactly 10 images according to their confidence. In this
way, it is convenient and efficient when participants are more
confident about the already chosen and ranked images, since
they do not need to rank more to make up 10 images, and the
rest are automatically filled by random frames. Overall, we
obtained human evaluation results from 14 participants on
321 data samples.

Table 3 Retrieval results for baselines, state-of-the-art methods,
our methods, and human performance. 1 ({) means a higher (lower)
value is better.

Method RI* R5T RI0T Mean] MRRT
Prior 051 330 801 4924 0043
Similarity 772 1669 2355 4310  0.137
I-SCO 389 186 3327 2472 0.1304
I-CAMP 436 2057 3553 23.66 0.1425
P-UNITER 90 3136 4972 1657 0203
P-Oscar 1148 3572 5428 1512  0.240
V-MoEE 521 2105 350 2429  0.149
C-StoryShow  10.05 27.17 4095 21.06  0.201
C-CMoEE 1292 3854 5855 1584  0.234
Ours-LF 290 4964 61.06 1483 0395
Ours-GF 2902 49.75 6094 1430 0396
Ours-SA 3022 4955 610 1431  0.398
Human 3801 576 73.58 - -

5 Results and Discussion
5.1 Quantitative Results

Tab. 3 summarises quantitative results of evaluating the
various methods. Our methods perform favorably against
all other existing methods under all metrics. There are
subtle performance differences between the three context
encoders in terms of R5 and R10, while the GF and SA
encoders perform slightly better than the LF encoder for R1.
The SA encoder outperforms both the LF and GF encoders
under R1. The pre-training-based transformers (UNITER [21]
and Oscar [22]) display superior performance to the
classic similarity-based text-based visual retrieval methods
(SCO [46], CAMP [19] and MoEE [49]). For context-based
methods (C-StoryShow [11] and C-CMoEE [8]), the better
performance of C-CMOoEE indicates the visual context has a
greater weight than textual context; we further validate this in
the ablation study (in Section 5.3). Human subjects achieve
leading results in all metrics. Mean and MRR results are
absent for the user study, as these metrics need rankings over
all the candidates which is unachievable for the user study.

5.2 Qualitative Results

Fig. 7 shows the top-5 selection results over an entire story
example by our model using the LF context encoder. Given
the initial keyframe with its descriptions, for each round, the
model needs to predict the possible keyframe conditioned
on the text description and the frame history. It can be seen
that from the top selected frames, the visual features share a
semantic similarity. For example, the candidates in the third
row concern a neon sign while Rank-1 and Rank-4 in the
6th row show a scene of a person using a phone, etc. Only
using text-based-image similarity is insufficient, as there are
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Rounds

1 The proprietor stares slack-jawed at his clock.
2 and smiles faintly as his balance ticks past a century.

Now, the words Out Of blink of on his neon sign, leaving only

Time illuminated.

4 Citizens hurry over and line up as the proprietor doles out his
newly acquired wealth.

5 At the timekeeper's headquarters.

6 Using a phone, Ray faces the time map.

7 Zone 12 shines in amber amidst the surrounding green
zones.

8 Ray ends the call and faces Jaeger.

In the ghetto, a tall young man with deep-set eyes walks
down a deserted street.

He stops and smirks fearlessly as the minutemen's car

10 S
stops in his path.

il
=)
e
il

- B
% ;
- .|
-
™ -

Top-5 selected Candidates

Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

Fig. 7 Qualitative retrieval results. The top-5 selected keyframes are shown given the script, denoted by green boxes.

similar candidates making the task challenging, while our
context-aware method can leverage the visual and textual
history context for better retrieval. Later rounds receive more
contextual information and the results tend to be better (rounds
4-10). We now quantitatively verify this observation.

5.3 Effectiveness of Context Encoding

The core part of our proposed approaches is the recurrent
architecture using context encoders to capture the contextual
information. In order to better compare whether the method
can effectively use the context, Tab. 4 presents the results for
early (rounds 2-4), middle (rounds 5-7), and late (rounds
7-9) temporal stages in storyboards using our method (LF).
In comparison, the MoEE results are also shown for each
temporal stage. Results demonstrate that our method performs
better in middle or late temporal stages than in earlier stages,
meaning that availability of more history information for
later rounds is important, and our model can successfully
utilize previous context for the retrieval task. However,
non-contextual models (like MoEE) do not show this change,
and indeed the performance in earlier stages is better than in
later stages.

5.4 Effectiveness of Dual Context

To show the contribution of visual and textual context used
in our methods separately, we designed experiments that
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Table 4 Results for different temporal stages using our method
with LF context encoder. Later temporal stages have better results
than earlier stages, indicating the historical context is significant in
retrieval.

Rounds R17T R5T R10T Mean] MRR?T
MoEE-Early 5.18 20.08 3514 2432 0.150
MoEE-Middle 4.89 20.12 34.65 2443 0.144
MoEE-Late 521  20.09 350 24.31 0.147
SA-Early 2827 4797 59.83 14.81 0.386
SA-Middle 31.18 50.56 62.03 13.96 0.412
SA-Late 29.24 4833 61.12 14.05 0.408

Table S Results of using textual- context only (-T), visual-context
only (-V) and both (-Full), in the LF model.

Method RIf R5t RI0T Mean] MRR?
LET 10.82 2754 4093 210  0.2066
LF-V 19.01 4463 60.14 1691  0.2993
LE-Full 290 4964 61.06 1488  0.395

use only the visual context and only the textual context, and
compare them to the full model using both contexts. The
results are shown in Tab. 5 using the LF fusion module.
They show that the usage of visual context, namely the frame
history, can alone perform better than the textual context for
all metrics, suggesting that visual elements of the context
are more important. The performance is further boosted by
adding the textual context, especially in R1, by about 52%.
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1. HARRY steps through the doorway and into a strange new world. 2. Diagon Alley is a narrow crooked lane hustling with witches and wizards in flowing cloaks
and pointed hats. 3. HAGRID towers over them all. 4. They pass tiny shops packed full of fascinating and unusual merchandize. 5. A selection of wizard's cloaks
and hats. 6. A pet shop full of owls and cages. 7. An owl sits on a purge outside the shop. 8. A bat stretches its wings above HARRY's head. 9. A group of

children gaze enviously at a sleek broomstick in a shop window. 10. HARRY looks worried.

SVl v

PSETRCRE W

CogView2 DALLE 2

Groud Truth

Fig. 8 Reviewing the text-to-image generation results on our dataset using Dall-E-2 and CogView?2.

5.5 Exploring Potential Applications

As the Sc2St dataset has a clear story structure, we hope to
further explore its application to other movie-related scenarios
besides contextual retrieval. One possible application may
be script-guided storyboard generation, unlike the usual
text-to-image (T2I) task, where a sequence of images needs
to be generated. Currently, T2I is still a challenging task
since most research has focused on single object (e.g. birds
or flowers) generation from text, and the quality of generated
complex scenes is not ideal [32, 54]. This is more challenging
for the movie domain which involves various characters,
objects, and scenes. Recent advances in T2I are driven
by scaling models on large datasets. These models, with
billions of parameters, and trained from abundant data using
hundreds or thousands of GPUs, show the potential to generate
realistic images from text [33-35, 55]. We thus examined the
generation quality of recently available state-of-the-art T2I
models: Dall-E-2 [35] and CogView-2 [34]. Specifically,
each keyframe in a storyboard is generated one by one
given its paired text. Some results are shown in Fig 8.
Note that the generated images are carefully picked since
each sentence can generate multiple images from different
random initialization, and we manually screened the most
suitable images. Dall-E-2 can generate more realistic images
than CogView-2. Simple scenes (e.g. the owl) can be well
synthesized by both models while complex scenes are harder
for CogView-2. The generated images lack coherence, having
inconsistent styles, which is to be expected since no contextual
information is used. With T2I benefiting from large-scale
modeling, we thus hope our proposed dataset can be applied
to fill the gap for more coherent and realistic storyboard

generation in future.

5.6 Limitations and Future Work

First, the movies included are limited. Our Sc2St dataset
can provide fine-grained storyboards based on 165 movies.
Inspired by the recent large-scale movie dataset [7], there
is potential to include more movies with our storyboard
annotations. Second, the evaluation of contextual generation
can be further investigated. We carefully designed the
benchmark evaluation for the Sc2St contextual retrieval task.
However, automatic perceptual evaluation of the generated
results remains challenging, and we leave it for future
work. Third, although we discussed potential text-to-image
generation and qualitative results using our dataset, other
applications such as storytelling, and video creation/editing
applications would also benefit from our dataset.

6 Conclusions

In this paper, we proposed a new script-to-storyboard dataset
(Sc2St) together with a contextual retrieval task in the movie
domain. The new dataset features a new data form called a
storyboard, which consists of sequential keyframe images
with corresponding textual descriptions. A storyboard has the
advantage of an explicit, clear, and coherent story structure
over the implicit storyline in movies. Compared to existing
movie datasets, the Sc2St dataset contain fine-grained, highly
diverse text annotations. The newly annotated keyframes are
semantically matched to the text. Using the new dataset,
we have benchmarked the contextual retrieval task with
an automatic ranking-based evaluation protocol. We have
proposed baselines with three variants to accomplish the
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task and compare them to state-of-the-art methods as well
as human performance. Quantitative results demonstrated
that our approach performs better by successfully leveraging
contextual information from both the text and image history.
Finally, we explored the potential of the generation task using
our dataset.

A.1 Implementation

Our proposed models were implemented using the deep
]. Adam [
optimisation method, with learning rate set to 0.0003 and

learning framework PyTorch [ ] was used as
scheduled with a cosine annealing strategy. For all models,
the batch size was set to 128. To select a best model, mean
ranking performance evaluated on a hold-out validation set
was used.

A.2 Additional Storyboard Samples

Figs. A1-A3 show more storyboard samples from different
movies, demonstrating that the keyframes in the storyboards
summarize the condensed visual information reflected in the
textual description. The sequences of keyframes provide a
coherent story, which one can understand without the original
long and redundant video information.

A.3 Human Evaluation Interface

The human evaluation interface is shown in Fig. A4. A
demonstration is provided at https://sc2st.com.
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Movie: 30 MINUTES OR LESS

Script:

1. Travis repeatedly pokes at Kate's face, which is covered in a Slayer T-shirt.

2. The van speeds down an industrial road at dusk.

Later that night our view rises from one of the Mustang's headlights to Nick.

who glances determinedly at his best friend beside him.

Chet glances back.

The Mustang parks.

Chet steps out and the Mustang continues on down the dirt road.

Chet runs down a path strewn with garbage.

Now our view rises from a heap of crushed cars to reveal the Mustang arriving in the scrapyard.
0. Its headlights go dim and Nick steps out.

© N oMW

—

Fig. A1 Storyboard example - 30 Minutes or Less

Movie: COLOMBIANA

Script:

1. William creeps down a flight of stairs

2. then presses his back to a wall as William reaches the bottom.

Bending over another dead bodyguard, William takes his gun.

Armed with a pistol in each hand, William steps into the courtyard.
William notices a flower resting three panels away on the pool's glass.
His nervous eyes scan the area as William walks across the pool.
Stopping in front of the cataleya orchid, William picks it up and squints as William examines it.
William lifts the flower to his nose, closes his eyes, and takes a sniff.
Opening his eyes, William smirks as William lifts his face from the flower.
10. Cataleya rises from a chair in the portico behind him.

© N O A

Fig. A2 Storyboard example - Colombiana
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Movie: IRON MAN2

Script:

1. Justin runs offstage.

Tony flies out through the opening in the glass roof.
3. Rhodey and the drones fire their guns at Tony.

4. The glass panels in the roof shatter.

5. showering down on the audience as people run off.
6. Ivan types on his computer.
7
8
9

N

. Commands pop up on his computer screen: "Deploy, deploy, deploy. ".
. Onstage, SOMEONE's thrusters fire up.
. Rhodey rockets straight upward and out of the arena.

10. The Air Force drones fly through the roof, breaking more glass.

Fig. A3 Storyboard example - [ron Man 2

TEXT:
0. Red Rackham again kicks out the burning gun powider.

. Sir Francis shoves him then cuts lose another lantern, which falls onto the
trail of powder.

2. Red Rackham elbows him then stomps out the gunpowder once again. 100 Options (Scroll down to see more)

Your Choice (0/10)

3. Sir Francis lunges, strikes Red Rackharm
4. then slices another rope holding alantern.

5. It falls onto the gunpowder.

6. They duel as the lit powder burns down another ladder and races across the
deck and the space below them.

7. Sir Francis runs his sword through Red Rackham

8. then backhands him in his face.

9. The pirate drops to his knees then falls over.

Movie: THE ADVENTURES OF TINTIN

Storyboard - What's the next?

Fig. A4 Human online evaluation interface.
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